THE Breaking news

ScienceEnergy Efficiency: Harnessing Spin Glass Material to Tame Computer Power Consumption

Energy Efficiency: Harnessing Spin Glass Material to Tame Computer Power Consumption

Published on






Taming Computers’ Energy Consumption with a New “Spin Glass” Material

A newly discovered material and its intriguing properties could pave the way for more efficient computing. In a new study, a team of European physicists has discovered a distinctive collective behavior in the atoms of a material called manganese-doped germanium telluride, which occurs at very low temperatures and gives rise to fascinating properties. These findings are not only interesting from the perspective of fundamental research but hold the potential for a significant breakthrough in information technology, promising to make computations less energy-intensive by orders of magnitude.

Reigning in energy consumption

Computers and information technology have transformed society in recent decades, finding their way into almost every aspect of industry, technology, science, and our everyday lives. However, the relentless growth of computer performance and capabilities has resulted in a corresponding increase in energy consumption, accompanied by the need to manage the heat generated by more powerful computers. A possible way to solve these problems could be new, more energy efficient materials, which might lead to a significant reduction in the computers’ energy consumption. One such material is germanium telluride, which has been studied in a recent study published in Nature Communications carried out by an international team of researchers led by Hugo Dil at the Swiss Federal Institute of Technology Lausanne, Gunther Springholz at Johannes Kepler University Linz, and Jan Minár at the University of West Bohemia. Through a process called “doping”, the team introduced small amounts of manganese atoms into the germanium telluride’s crystal lattice, resulting in manganese-doped germanium telluride that at sufficiently low temperatures becomes a ferrimagnet and, upon further cooling, turns into what is known as spin glass.

The spin glass phase

Ferrimagnetism is a specific form of magnetism where the spin or rotation of some of a material’s atoms point in one direction, while the rest point in the opposite direction. This behavior differs from the more familiar ferromagnetic behavior, observed in materials like iron, where all spins are oriented along the same line, creating a magnetic field. At super cold temperatures, below roughly -230 degrees Celsius, germanium telluride enters the spin glass phase, in which the spins of all its atoms become random. Under an applied magnetic field or electric current, spin glass state materials respond differently compared to more conventional materials, which can be of great use in computing since the directions of atomic spins can be used to encode information that a computer can manipulate. The authors of the study found that they could change the direction of the magnetic field generated by manganese-doped germanium telluride by passing a current through it. The most significant part being that the current required to make the change was about six orders of magnitude less than what would normally be required, which could significantly reduce the energy consumption when performing calculations based on spin manipulation in this material.

Spin glass computations

In its spin glass state, manganese-doped germanium telluride becomes very sensitive to an applied electric current, which offers the opportunity for the magnetic field to behave as a bit of information corresponding to either a 1 or a 0 (just like a normal computer bit). If very little energy is required to change the value of a bit, then the…


Check the Original source of this article

Latest News

American and United Airlines Seek Exit from Chicago O’Hare Airport Agreement

As American and United Airlines seek to back out of a deal to update...

Uncovering the Truth Behind TEMU’s Holiday Deals: Hype or Hazard?

Holiday Hype or Hazard? The Truth Behind TEMU's Deals The Shopping App TEMU: A Risky...

Innovation: Engineering Students Push Boundaries with Machine-Building Creativity

```html Wake Tech Engineering Students Showcase Creativity in Rube Goldberg Competition Wake...

More like this

Top Cyber Monday 2023 Retail Lessons for Footwear Brands

Top Cyber Monday 2023 Lessons for Retailers – Footwear News Reflections on Cyber Week 2023 Meghan...

American and United Airlines Seek Exit from Chicago O’Hare Airport Agreement

As American and United Airlines seek to back out of a deal to update...

Uncovering the Truth Behind TEMU’s Holiday Deals: Hype or Hazard?

Holiday Hype or Hazard? The Truth Behind TEMU's Deals The Shopping App TEMU: A Risky...

Innovation: Engineering Students Push Boundaries with Machine-Building Creativity

```html Wake Tech Engineering Students Showcase Creativity in Rube Goldberg Competition Wake...

Chase Travel Unveils Exclusive Luxury Hotel Program Expansion and Rebranding – Discover Unbeatable Deals and Offers Now!

Chase Travel's Luxury Hotel Program Gets a Revamp and Rebrand Chase Travel to Launch The...